Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Technical Paper

Characteristics of PMHS Lumbar Motion Segments in Lateral Shear

2005-11-09
2005-22-0017
The purpose of this study was to determine the characteristics of eighteen lumbar spine motion segments subjected to lateral shear forces under quasi-static (0.5 mm/s) and dynamic (500 mm/s) test conditions. The quasi-static test was also performed on the lumbar spine of a side impact anthropomorphic test device, the EuroSID-2 (ES-2). In the quasi-static tests, the maximum force before disc-endplate separation in the PMHS lumbar motion segments was 1850 ± 612 N, while the average linear stiffness of PMHS lumbar motion segments was 323 ± 126 N/mm. There was a statistically significant difference between the quasi-static (1850 ± 612 N) and dynamic (2616 ± 1151 N) maximum shear forces. The ES-2 lumbar spine (149 N/mm) was more compliant than the PMHS lumbar segments under the quasi-static test condition.
X